If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x-156=0
a = 3; b = 4; c = -156;
Δ = b2-4ac
Δ = 42-4·3·(-156)
Δ = 1888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1888}=\sqrt{16*118}=\sqrt{16}*\sqrt{118}=4\sqrt{118}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{118}}{2*3}=\frac{-4-4\sqrt{118}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{118}}{2*3}=\frac{-4+4\sqrt{118}}{6} $
| 3x^2+4x-1563x=0 | | 26-2x+2=x | | 7x=3(x-8) | | 2=v/5-15 | | -4x+6x=3(x+3)-(x+9) | | 1(x=-2)=1(x=-2) | | 190=10x+10 | | 3x-22=30x-25 | | 100x=150-85x | | 11x+125x-12=17(8x+13) | | 2(3x^2+4x-156)=0 | | 12=2u-10 | | 0.3x+7=7 | | -2x+14=6-2x+8 | | 11m+22=-9m+16 | | 4x+1+6x-10=180 | | a-0.63=1.16 | | 5x+3+9x+33=180 | | 4x+1+6x-10=2x | | -7(3n+9)=15n | | y^2-15y=50 | | S+2.5s+20s=55 | | 12w^2=27w-15 | | x+5/10=1/5+x-6/8 | | 3x+1/5=2 | | -20+14x=10+16 | | x/2+9=-3 | | 8/5+4/5x=23/10+3/2x+1/2 | | 9x+1-5x=3+3x+7 | | 0.3x+2=17 | | 25.92=5g+3.62 | | -6(9x+5)-3x+4x=-408-x |